Math $665 \cdot$ FINAL EXAM • May 13, 2010

1) Categorize all zeros and singularities of the following functions, find two lowest-order non-zero terms in the Laurent or Taylor series of $f(z)$ near the given point z_{0}, and state the region on which the corresponding expansion is valid:
(a) $f(z)=\frac{\sinh z}{1-\cos z}$ at $z_{0}=0$

- Zeros at $z_{k}=i \pi k, k \in \mathbb{Z}, k \neq 0$
- Poles of order 2 at $\cos \mathrm{z}_{\mathrm{k}}=1 \Rightarrow z_{k}=2 \pi k, k \in \mathbb{Z}, k \neq 0$
- Simple pole at $z=0$, with the following Laurent expansion, converging in $0<|z|<2 \pi$

$$
\begin{aligned}
f(z) & =\frac{\sinh z}{1-\cos z}=\frac{z+\frac{z^{3}}{3!}+O\left(z^{5}\right)}{1-\left(1-\frac{z^{2}}{2}+\frac{z^{4}}{4!}+O\left(z^{6}\right)\right)}=\frac{z+\frac{z^{3}}{3!}+O\left(z^{5}\right)}{\frac{z^{2}}{2}-\frac{z^{4}}{4!}+O\left(z^{6}\right)}=\frac{z\left(1+\frac{z^{2}}{3!}+O\left(z^{4}\right)\right)}{\frac{z^{2}}{2}\left(1-\frac{z^{2}}{12}+O\left(z^{4}\right)\right)} \\
& =\frac{2}{z} \frac{1+\frac{z^{2}}{3!}+O\left(z^{4}\right)}{1-\underbrace{\frac{z^{2}}{12}+O\left(z^{4}\right)}_{\zeta}}=\frac{2}{z}\left(1+\frac{z^{2}}{3!}+O\left(z^{4}\right)\right) \underbrace{\left(1+\frac{z^{2}}{12}+O\left(z^{4}\right)\right)}_{1+\zeta+\zeta^{2}+\ldots}=\frac{2}{z}\left(1+\frac{z^{2}}{4}+O\left(z^{4}\right)\right)=\frac{2}{z}+\frac{z}{2}+O\left(z^{3}\right)
\end{aligned}
$$

Residue equals 2, as it should
(b) $f(z)=\frac{\exp (1 / z)}{\log _{\pi} z}$ at $z_{0}=1 \quad$ (branch $\log _{\pi} Z$ satisfies $\left.-\pi \leq \arg z<\pi\right)$

- Branch point at $z=0$ (note: it is not an essential singularity since it is not isolated)
- Branch cut along the negative real axis
- Simple pole at $z=1$, with the following Laurent expansion, converging in $0<|z-1|<1$

Denote $z=1+\zeta$:

$$
\begin{aligned}
f(z) & =\frac{\exp \frac{1}{1+\zeta}}{\log _{\pi}(1+\zeta)}=\frac{\exp \left(1-\zeta+\zeta^{2}+\ldots\right)}{\zeta-\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3}-\frac{\zeta^{4}}{4}+\ldots}=\frac{\exp (1) \exp \left(-\zeta+\zeta^{2}+\ldots\right)}{\zeta\left(1-\frac{\zeta}{2}+O\left(\zeta^{2}\right)\right)}=\frac{e}{\zeta} \frac{1-\zeta+O\left(\zeta^{2}\right)}{1-\frac{\zeta}{2}+O\left(\zeta^{2}\right)} \\
& =\frac{e}{\zeta}\left(1-\zeta+O\left(\zeta^{2}\right)\right)\left(1+\frac{\zeta}{2}+O\left(\zeta^{2}\right)\right)=\frac{e}{\zeta}\left(1-\frac{\zeta}{2}+O\left(\zeta^{2}\right)\right)=\frac{e}{z-1}-\frac{e}{2}+O(z-1)
\end{aligned}
$$

This agrees with the value of the residue (use $\left.N\left(z_{0}\right) / D^{\prime}\left(z_{0}\right)\right):\left.\frac{\exp (1 / z)}{\left(\log _{-\pi} z\right)^{\prime}}\right|_{1}=\left.\frac{\exp (1 / z)}{1 / z}\right|_{1}=\frac{\exp (1 / 1)}{1}=e$
2) Describe all singularities of the integrand inside the integration contour, and calculate each integral. Each integration contour is a circle of radius $1 / 2$:
(a) $\oint_{|z|=1 / 2} \frac{z}{\cos (1 / z)} d z$

- Simple poles at $\cos (1 / z)=0 \Rightarrow \frac{1}{z_{k}}=\pi\left(k+\frac{1}{2}\right) \Rightarrow z_{k}=\frac{1}{\pi(k+1 / 2)}, k \in \mathbb{Z}$
- These poles have an accumulation point (a cluster point) at $z=0$

To calculate the integral, we have to use the mapping $\zeta=1 / z$

$$
\left.\left.\oint_{|z|=1 / 2} \frac{z d z}{\cos (1 / z)}=-\oint_{|\zeta|=2} \frac{1}{\zeta} \frac{-d \zeta / \zeta^{2}}{\cos \zeta}=\oint_{|\zeta|=2} \frac{d \zeta}{\substack{\text { THREE POLES } \\
\text { INSIDE CIRCLE }}} \right\rvert\, \begin{array}{l}
\zeta^{3} \cos \zeta \\
\end{array}\right) \pi i\left\{\operatorname{Res}(f ; 0)+\operatorname{Res}\left(f ; \frac{\pi}{2}\right)+\operatorname{Res}\left(f ;-\frac{\pi}{2}\right)\right\}
$$

Residue at zero equals $1 / 2$, most easily calculated using series expansion:

$$
\begin{aligned}
& \frac{1}{\zeta^{3} \cos \zeta}=\frac{1}{\zeta^{3}\left(1-\frac{\zeta^{2}}{2}+O\left(\zeta^{4}\right)\right)}=\frac{1}{\zeta^{3}}\left(1+\frac{\zeta^{2}}{2}+O\left(\zeta^{4}\right)\right)=\frac{1}{\zeta^{3}}+\frac{1}{2 \zeta}+O(\zeta) \\
& \begin{aligned}
\Rightarrow 2 \pi i\left\{\operatorname{Res}(f ; 0)+\operatorname{Res}\left(f ; \frac{\pi}{2}\right)+\operatorname{Res}\left(f ;-\frac{\pi}{2}\right)\right\} & =2 \pi i\left(\frac{1}{2}-\left.\frac{1}{\zeta^{3} \sin \zeta}\right|_{\pi / 2}-\left.\frac{1}{\zeta^{3} \sin \zeta}\right|_{-\pi / 2}\right) \\
& =2 \pi i\left(\frac{1}{2}-2\left(\frac{2}{\pi}\right)^{3}\right)=i\left(\pi-\frac{32}{\pi^{2}}\right)
\end{aligned}
\end{aligned}
$$

b) $\oint_{|z|=1 / 2} \frac{\cos (1 / z) d z}{z}$

- The only singularity is the essential singularity at $z=0$. Therefore, we have to use the series expansion:

$$
\frac{\cos (1 / z)}{z}=\frac{1-\frac{1}{2 z^{2}}+\frac{1}{4!z^{4}}+O\left(z^{-6}\right)}{z}=\frac{1}{z}-\frac{1}{2 z^{3}}+\frac{1}{4!z^{5}}+\ldots
$$

The residue is obviously 1 , so the integral over any circle surrounding the origin equals $2 \pi i$
3) Calculate any two of the following three integrals. Carefully explain each step.
(a) $\int_{-\infty}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x=\frac{\pi(b-a)}{2}$, where $a>0, b>0$ are real constants (use indented contour)
$\oint \frac{e^{i a z}-e^{i b z}}{z^{2}} d z=\int_{\varepsilon}^{R} \frac{e^{i a x}-e^{i b x}}{x^{2}} d x+\int_{-R}^{\varepsilon} \frac{e^{i a x}-e^{i b x}}{x^{2}} d x+\underbrace{\int_{C_{\varepsilon}}^{C^{i a z}} \frac{e^{i a z}-e^{i b z}}{z^{2}} d z}_{\substack{ \\\rightarrow-i \pi \operatorname{Re} s\left(\frac{e^{i a z}-e^{i b z}}{z^{2}} ; 0\right) \\=-i \pi(i a-i b)=\pi(a-b)}}+\underbrace{\int_{C_{R}}^{C_{R}} \frac{e^{i a z}-e^{i b z}}{z^{2}} d z}_{\substack{1 . \left\lvert\, \leq \frac{1}{R^{2}} \pi\right. \\ \text { as } R \rightarrow \infty}}=0$
Thus, in the limit $\varepsilon \rightarrow 0$ and $\mathrm{R} \rightarrow \infty$, we obtain (here P.V. stands for Cauchy Principal Value):

$$
\begin{aligned}
\text { P.V. } \int_{-\infty}^{+\infty} \frac{e^{i a x}-e^{i b x}}{x^{2}} d x & =\int_{-\infty}^{+\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x+i \underbrace{\text { P.V. } \int_{-\infty}^{+\infty} \frac{\sin (a x)-\sin (b x)}{x^{2}} d x=-\pi(a-b)}_{=0} \\
& \Rightarrow \int_{0}^{+\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x=\frac{\pi(b-a)}{2}
\end{aligned}
$$

(b) $\int_{0}^{\infty} \frac{d x}{x^{m}+1}=\frac{\pi}{m \sin (\pi / m)}$, where $m>0$ is an integer (integrate around a circular sector)

Integrate around circular sector with angle $2 \pi / m$, since along the top part of sector $z^{m}=\left(e^{i 2 \pi / m} x\right)^{m}=x^{m}$

$$
\oint \frac{d z}{1+z^{m}}=\int_{0}^{R} \frac{d x}{1+x^{m}}+\int_{R}^{0} \frac{e^{i 2 \pi / m} d x}{1+x^{m}}+\underbrace{\int_{\substack{R^{4}}} \frac{d z}{1+z^{m}}}_{\substack{1 . . \left\lvert\, \frac{2 \pi R / m}{R^{5}-1} \\ \rightarrow \frac{2 \pi}{m R^{4}} 0\right.}}=2 \pi i \operatorname{Res}\left(\frac{1}{1+z^{m}} ; e^{-i \pi / m}\right)
$$

Taking the limit $R \rightarrow \infty$:

$$
\begin{aligned}
& \left(1-e^{i 2 \pi / m}\right) \int_{0}^{\infty} \frac{d x}{1+x^{m}}=\left.2 \pi i \frac{1}{m z^{m-1}}\right|_{e^{i \pi / m}}=\frac{2 \pi i}{m e^{i \pi(m-1) / m}}=\frac{2 \pi i}{-m e^{-i \pi / m}} \\
& \Rightarrow \int_{0}^{\infty} \frac{d x}{1+x^{m}}=\frac{2 \pi i}{-m e^{-i \pi / m}\left(1-e^{i 2 \pi / m}\right)}=\frac{2 \pi i}{m\left(e^{i \pi / m}-e^{-i \pi / m}\right)}=\frac{\pi}{m \sin (\pi / m)}
\end{aligned}
$$

(c) $\int_{0}^{\infty} \frac{\ln x d x}{x^{2}+a^{2}}=\frac{\pi \ln a}{2 a}, a>0\left(\right.$ Intergate $\log _{p} z /\left(z^{2}+a^{2}\right)$ around a semi-circular indented contour)

$$
\begin{aligned}
& =2 \pi i \operatorname{Res}\left(\frac{\log _{p} z}{z^{2}+a^{2}} ; i a\right)=2 \pi i \frac{\log _{p}(i a)}{2 i a}=\frac{\pi}{a}\left(\ln a+\frac{i \pi}{2}\right)
\end{aligned}
$$

Now take the limit $\varepsilon \rightarrow 0, R \rightarrow \infty: \int_{0}^{\infty} \frac{\ln x+(\ln x+i \pi)}{x^{2}+a^{2}} d x=2 \int_{0}^{\infty} \frac{\ln x}{x^{2}+a^{2}} d x+i \pi \int_{0}^{\infty} \frac{d x}{x^{2}+a^{2}}=\frac{\pi}{a}\left(\ln a+\frac{i \pi}{2}\right)$
Take the real part, and divide by $2: \quad \int_{0}^{\infty} \frac{\ln x}{x^{2}+a^{2}} d x=\frac{\pi \ln a}{2 a}$
4) Some of the statements in (a)-(d) below are false. For each false statement, give a counter-example proving that it isn't true. For each true statement, state the theorem from which it follows:
(a) If the integral of $f(z)$ is zero over any closed contour in domain D, then the second derivative of $f(z)$ exists in D, even if D is not simply-connected

True: this follows from the Morera's Theorem, combined with the Cauchy Integral Formula.
(b) If $f(z)$ has a derivative in arbitrary domain D, it must also have an anti-derivative everywhere in D

Not true: only holds for simply-connected domains (in which case it follows from the Cauchy-Goursat theorem, and expression for anti-derivative). Consider for instance $f(z)=1 / z$. It is analytic in any ring centered at the origin, but its anti-derivative has a branch cut crossing any such ring.
(c) Two contour integrals of $f(z)$ over different open contours connecting the same two points are equal if $f(z)$ is analytic along each of these two contours
Not true, since there may be a singularity with non-zero residue between the two contours: in this case the difference between the two integrals is a closed-contour integral with non-zero value determined by the residue(s)
(d) Integral of an analytic function $f(z)$ over a circle equals twice the integral over a semi-circle.

Not true, unless the anti-derivative is even with respect to semi-circle center, in which case both integrals equal zero. Otherwise, the closed-contour integral is zero, while the semi-circle integral is nonzero. Consider for instance $f(z)=C=$ const (or any even power of z) over a circle centered at the origin.
5) Find coefficients C_{-2} and C_{-4} in the Laurent series for $f(z)=\sec z$ converging in the ring $\pi / 2<|z|<3 \pi / 2$
$C_{m}=\frac{1}{2 \pi i} \oint \frac{f(z) d z}{\left(z-z_{0}\right)^{m+1}}$
Note that there are two poles inside any contour going around the ring $\pi / 2<|z|<3 \pi / 2$; therefore :

$$
\begin{aligned}
& \Rightarrow C_{-2}=\frac{1}{2 \pi i} \oint \frac{z d z}{\cos z}=\operatorname{Res}\left(\frac{z}{\cos z} ; \frac{\pi}{2}\right)+\operatorname{Res}\left(\frac{z}{\cos z} ;-\frac{\pi}{2}\right)=\frac{\pi / 2}{-\sin (\pi / 2)}+\frac{-\pi / 2}{-\sin (-\pi / 2)}=-\pi \\
& \Rightarrow C_{-4}=\frac{1}{2 \pi i} \oint \frac{z^{3} d z}{\cos z}=\operatorname{Res}\left(\frac{z^{3}}{\cos z} ; \frac{\pi}{2}\right)+\operatorname{Res}\left(\frac{z^{3}}{\cos z} ;-\frac{\pi}{2}\right)=\frac{(\pi / 2)^{3}}{-\sin (\pi / 2)}+\frac{(-\pi / 2)^{3}}{-\sin (-\pi / 2)}=-\frac{\pi^{3}}{4}
\end{aligned}
$$

6) Show that transformation $w=\frac{1}{2}\left(\frac{z}{e^{a}}+\frac{e^{a}}{z}\right)$, where α is a real constant, maps the interior of the unit circle into the exterior of the ellipse $\left(\frac{u}{A}\right)^{2}+\left(\frac{v}{B}\right)^{2}=1$

Consider the mapping of the unit circle, $z=\exp (i \theta)$:

$$
\begin{aligned}
w & =\frac{1}{2}\left(\frac{z}{e^{a}}+\frac{e^{a}}{z}\right)=\frac{1}{2}\left(\frac{e^{i \theta}}{e^{a}}+\frac{e^{a}}{e^{i \theta}}\right)=\frac{1}{2}\left(e^{i \theta-\alpha}+e^{-i \theta+\alpha}\right)=\cos \theta \frac{e^{-\alpha}+e^{\alpha}}{2}+i \sin \theta \frac{e^{-\alpha}-e^{a}}{2} \\
& =\underbrace{\cos \theta \cosh \alpha}_{u}-i \underbrace{\sin \theta \sinh \alpha}_{-v}
\end{aligned}
$$

From the basic trigonometric identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, we obtain the result $\left(\frac{u}{\cosh \alpha}\right)^{2}+\left(\frac{v}{\sinh \alpha}\right)^{2}=1$
To see that the interior of the unit circle is mapped to the exterior of this ellipse, consider the mapping of $z=0$: because the map has a pole at $z=0$, it is mapped to infinity, which is exterior to the ellipse in the w-plane
7) Find and sketch the domain of uniform convergence of series $F(z)=\sum_{n=1}^{\infty} \pi^{-n} \sin n z$ (use exponential representation of sine).
$F(z)=\sum_{n=1}^{\infty} \pi^{-n} \sin n z=\sum_{n=1}^{\infty} \frac{e^{i n z}-e^{-i n z}}{2 i \pi^{n}}=-\frac{i}{2} \sum_{n=1}^{\infty}\left(\frac{e^{i z}}{\pi}\right)^{n}+\frac{i}{2} \sum_{n=1}^{\infty}\left(\frac{e^{-i z}}{\pi}\right)^{n}$
The two geometric series converge if the two geometric ratios are less than 1 in modulus:
$\left.\left|\frac{e^{i z}}{\pi}\right|=\left|\frac{e^{i(x+i y)}}{2}\right|=\frac{e^{-y}}{\pi}<1 \Rightarrow e^{-y}<\pi \Rightarrow y>-\ln \pi\right\}$
$\left.\left|\frac{e^{-i z}}{\pi}\right|=\left|\frac{e^{-i(x+i y)}}{2}\right|=\frac{e^{y}}{\pi}<1 \Rightarrow e^{y}<\pi \Rightarrow y<\ln \pi\right\}$
Converges within an infinite horizontal strip $|y|<\ln \pi$

